Projects

Here you will find R&D projects in the field of climate-neutral cities, which were funded as part of initiatives of the Ministry of Climate Protection (BMK), such as "TIKS" or "City of the Future".

There are 333 results.

Stadt der Zukunft

lieBeKlima - quality assurance of cross-property greening for urban climate resilience in the neighbourhood development "Am Kempelenpark"

lieBeKlima aims to initiate the implementation of a cross-property and cross-system greening concept for the "Am Kempelenpark" neighbourhood development. This will be realized with innovative, identity-creating participation processes and a comprehensive quality assurance process. The focus lies on an interconnected consideration of integral greening concepts with higher-level water management and plus-energy concepts.

Stadt der Zukunft

lowTEMP4districtheat - Reduction of the system parameters of heating networks for the integration of renewable heat sources using soft sensors

Analysis of the use of soft sensors in addition to selective real measurements for the complete recording of real-time parameters of heating networks. The data obtained enable detailed grid simulations with low computing power requirements and form the basis of a strategy for lowering the grid temperatures and feeding in decentrally generated heat.

Klimaneutrale Stadt

m-hub - a web-based data hub for collection and query of material compositions of the building stock of the City of Vienna

The project creates a web-based platform with which the material composition of buildings within the city of Vienna can be entered and queried. In the background, a prediction model based on artificial intelligence is trained to make forecasts for buildings that have not yet been cataloged.

Stadt der Zukunft

mAIntenance - Investigation of AI supported maintenance and energy management

Optimized & reliable operation of Heating, Ventilation and Air Conditioning (HVAC) systems in terms of maintenance and energy management, using predictive, data-based & self-learning error detection. Conceptual design and prototype implementation of an AI (Artificial Intelligence) tool for automated data analysis and recommendations for technical building operators.

Stadt der Zukunft

metaTGA - Metadata and process models for open BIM in building service engineering

The objective of this research project is to design a methodology for developing data and process models and to apply them by modelling selected MEP systems. A particular but not exclusive focus is put on the renewable heating technologies, e.g. heat pumps, solar heat and biomass as well as ventilation systems. The data and process models developed in this research project will be scientifically evaluated in two pilot projects. The models, the approaches taken during development and the project team’s experiences with the pilot application of the models will be disseminated openly.

Stadt der Zukunft

openBAM - Open Building Automation Modelling - Open modeling of building automation over the entire building life cycle

Platform-independent modeling of control and regulation logic for detailed study of building automation systems involving construction and building technology. The result enables the analysis of energy saving potentials through building automation before construction.

Stadt der Zukunft

plusenergy-FLAGSHIP: Plus-Energy office building 2.0 - the viadonau headquarters

In the course of this project, various innovations towards a "Plus-Energy Standard 2.0" are to be implemented and combined in an overall concept for the new viadonau headquarters (via donau - Österreichische Wasserstraßen-Gesellschaft m.b.H.).

Stadt der Zukunft

scaleFLEX - Scalable method for optimizing the energy flexibility of districts

Development of a decentrally organized automation method for improving the demand-side flexibility options of buildings and districts. The utilized data-driven algorithm promise high scalability and therefore low installation and operating costs. The developed method will be validated using different building types (high-tech office buildings, low-tech office buildings, residential buildings).

Stadt der Zukunft

see-it - Camera based, user centric daylight control system for optimized working conditions

In the project technologies in the field of building construction and building automation are being researched for quality and performance improvements in the workplace. The aim is to individualize the control of sun protection to the people who need to be protected from glare and overheating and hope to see through.

Klimaneutrale Stadt

sewageENERGYrecovery - Performance comparison of different wastewater heat recovery systems for renewable heat generation

Independent detailed testing of the performance and efficiency of different wastewater heat recovery systems in actual operation by analysing measurement data. Evaluation of the analysed systems with regard to their optimal application possibilities.

Stadt der Zukunft

vilFIT – Villach Fit 4 Urban Mission

In this project, measures, strategies and the necessary capacity building for achieving climate neutrality in the city of Villach will be advanced. The focus is on social and structural innovations (participation processes, development of pilot initiatives, public relations, etc.) as well as the definition of networks and structures or controlling and monitoring instruments.

Stadt der Zukunft

ÖKO-OPT-AKTIV - Optimised control and operating behaviour of thermally activated buildings in future urban districts

Development and simulation of scalable, distributed control strategies for the use of the storage effect of thermally activated components in buildings of future city districts for their energy supply by an energy centre.

Stadt der Zukunft

ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts

In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.