Projects
There are 43 results.
Documentation, comparison and processing of demonstration results on the topic of "Digital Building Twin"
The aim of the project was to compare results from two demonstration projects of a digital building twin and to document initial operational experiences.
GeoDatKlim - Geo Data and Satellite Data for Carbon Neutral Cities
The Vienna Geospace Hub innovation lab will help optimize the application of geospatial and satellite data to solve complex urban challenges. The innovation lab serves as a networking platform for administration, science, economy, as well as a development and test environment for innovative use cases.
Green BIM - Green building infrastructure as part of BIM-based planning and maintenance
Fusion of greenery and BIM planning to achieve a friction-free conducting and maintenance. By analysing the case studies, “Green BIM” examined to what extent typical steps in planning regarding greened buildings can be edited by characteristic software programs in a BIM-equitable way. The expected outcomes are supplements to international standards for data structures in civil engineering (IFC / ISO 16739) which are further on added to BIM applications by the software industry.
Green SandboxBuilder - Regulatory sandboxes in the field of sustainable construction and renovation
In the "Green SandboxBuilder" project, for the first time in Austria, the need for regulatory sandboxes for ecologically sustainable and climate-effective projects in the building sector had been systematically explored. The implementation of regulatory sandboxes in the Austrian construction sector can contribute to decisively accelerating the introduction of technological, procedural and social innovations and thus to achieving the sustainability goals.
Housing 4.0 - digital platform for affordable living
The main aim of this project is the development of an integrated framework for the digital platform "Housing 4.0"; thus supporting integrated planning and project delivery through coupling various digital tools and databases. Thereby, the potentials of BIM for modular, off-site housing assembly in order to improve planning and construction processes, reduce cost and construction time and allow for mass customization will be explored. The novel approach in this project is user-involvement; which has been neglected in recent national and international projects on off-site, modular construction, supported by digital technologies.
KityVR - Artificial intelligence techniques to implement CityGML models and VR visualization
The goal of the project is to link 3D city models and virtual reality for energy-relevant applications as key-enabler for digital planning, construction and operational management. Missing data will be calculated using statistical enrichment methods.
M-DAB - Digitise, analyse and sustainably manage the city's material resources
The research project investigates how digital technologies can support us in determining the existing and future material resources in construction qualitatively (building materials and their recycling) and quantitatively (quantities of building materials).
M-DAB2: Material intensity of inner development - resource assessment and localization of urban development potentials
For the first time, the material intensity of inner development (in terms of material quantities) for different design variants is to be considered in the evaluation of inner development potentials. A set of methods for the holistic evaluation of potential areas and different development variants and scenarios for resource-saving inner development will be created.
MaBo - material saving in bored piles - a contribution to reducing CO2-emissions in the construction industry
Development of an innovative method for saving material in bored piles in order to reduce CO2 emissions in the construction industry. By optimizing the construction methods and using alternative materials, the sustainability of the foundation bodies is to be improved.
OctoAI: The next generation of high-performance edge AI for smart buildings
Current IoT (Internet of Things) solutions for buildings depend almost exclusively on cloud infrastructure and cloud-based services. In the OctoAI project, we are developing the next generation of high-performance Edge AI (Artificial Intelligence) for smart buildings. In OctoAI, we combine the concept of edge AI with user-centric energy services and test two edge-ready applications.
QualitySysVillab - Protecting sustainable qualities in neighbourhood developments through process control and new digital methods
Development of a process concept to bring sustainable qualities in neighbourhood development from the intention and announcement level to the built reality. The process is supported by digital methods of energy and structural design and evaluated in the context of a case study.
ReCon: Development of a resilient hook-and-loop-fastening-system for the adaptable assembly of building components in the building industry
Systemic examination of the hook-and-loop fastener and building component interfaces for the development of a resilient fastening system between parts/components with different functions and lifespan. The desired result serves to verify the fastening system and forms a basis for further research and establishment in the building industry.
SELF²B - self-aware, self-diagnosing buildings, HVAC, and PV systems for the next generation of energy efficient operations
SELF²B develops and demonstrates an AI-based, self-learning, and self-diagnosing fault detection and diagnosis (FDD) solution for HVAC and PV systems in two buildings in Vienna. The innovation surpasses the current state of the art by combining semantic data, ontologies, and machine learning. The goal is to achieve energy savings and efficiency improvements in building operations and to make the technology widely applicable.
TWIN - Digital twins for sustainable buildings
Digital building twins have hardly been used in practice due to an often unfavourable cost-benefit ratio. The aim of the TWIN project is to bring together use cases of digital building twins with a high ecological and economic impact in order to prepare application scenarios with great implementation potential.
Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning
Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.
Twin2Share - Digital twins for energy optimization in energy communities (ECs)
Digital twins to support energy communities over their life cycle. The project focuses on optimizing energy efficiency and costs, dynamic load management and the integration of users to promote sustainable energy use and the stabilization of the electricity grid.
VR4UrbanDev - Virtual Reality as an innovative, digital tool for the integrative urban development of the future
Virtual reality (VR) has the potential to make complex issues more quickly comprehensible and directly tangible. In the VR4UrbanDev project, we are using this potential for energy planning processes for buildings and urban districts. On the basis of test areas, we develop methods for importing and visualising energy-related real-time data and simulation data in the VR environment.
Vitality City - Holistic energy strategies for cities in transition
Energy simulation of any size city (municipalities) based on the data from laser scanning and satellite analysis (Geodata) to obtain dynamical energy demands and available energy resources.
baubehoerde.at - Development of a Vision 2030 for a Digital Building Authority and Recommendations for Action in Austria
In Austria, planning permission applications are submitted and managed largely manually. The aims of the baubehoerde.at project are to evaluate the potential and limitations of digitizing building approval processes and to create a Vision 2030 strategy for a digital building authority.
digiactiv - digital transformation for more interactivity in MEP-(mechanical, electrical and plumbing-)planning
The aim of the digiactiv project is to improve the interoperability between the different stakeholders in the building construction sector using open and neutral semantic data models. With digital transformation processes, digiactiv helps to increase the quality of planning and the operation of buildings, as well as to minimize the interface risk between various stakeholders.