Projects
There are 35 results.
MURREAL: Murtaler Reallabor - On the way to 100% renewable energy by 2040
MURREAL connects the actors of the industrial region Murtal with specialists in the field of high tech and materials with the raw material and energy sector, service providers and research and development. In this exploration for a real laboratory, synergies are to be worked out and business models are to be built up to consistently take the path towards 100% renewable energy and climate neutrality by 2040.
ModularHeatNet
The aim of the project is to support Ottensheim in phasing out fossil fuels and developing a "climate-neutral" heat supply. As a result, the community will receive a solid decision-making basis based on the technical, economic, organizational, and environmental comparison of the examined heat supply approaches.
NUCLEUS - Sustainable Urban Clusters for Climate-Neutral, Efficient, and Eco-Friendly Urban Development
The exploratory project NUCLEUS examines how Positive Energy Districts (PEDs) can serve as catalysts for positive urban developments. The climate pioneer district Tagger Areal in Graz serves as a case study. The project aims to identify technical and regulatory challenges and develop future-proof energy concepts to enable the exchange of electricity, heat, and cooling with surrounding industrial enterprises.
REGOreal - 100% Renewable Energy Region: Local Energy Common Good Economy in real laboratories for networked energy and mobility cells
In REGOreal, the exploration for a 100% renewable energy region in the area of Retz-Horn-Krems-Tulln (Lower Austria) and Mallnitz (Ktn) is taking place. There are four focus topics: 100 Renewable Energy Communities (REC), 1.000 building renovations, 10.000 energy exporters (in the sense of employees who carry the approach into their private environment) and 100 Mio. km of sustainable mobility with extensive use of IT for the development of local integrated energy systems (IES) to integrate a colorful mix of different actors and objects.
REal - The laboratory for Integrated Regional Renewable Energy Systems
In the REal project, a holistic, scalable and user-friendly concept is created, whereby sector-coupled, municipal energy systems with 100% renewable energy can be implemented, considering all necessary aspects from planning to operation, reducing design costs and accelerating an Austria-wide implementation.
RST Reloaded - Flexibilisation of the urban power supply system by adapting the existing ripple control system
"RST reloaded" utilises existing ripple control technology (RST) to activate flexible loads in a targeted manner to benefit the grid and thus create capacities for more renewable energy in urban electricity grids. The aim is to analyse technical potential and user acceptance in equal measure and validate them in an implementation. The approach is scalable, legally compliant and transferable to other municipal utilities.
Reallabor 100% renewable energy Waldviertel
Under the motto "Always one step ahead", the aim is to develop a content-related and economic implementation concept for a "Reallabor 100% erneuerbare Energie Waldviertel".
Reallabor Weizplus - Reallabor climate-neutral region Weizplus
Clarification of relevant questions for the potential establishment of a real lab in the region of Weizplus, which aims at a 100% supply of the region with renewable energies by 2030. The content-related technological focus of the activities of the future real lab is on all energy-relevant sectors (heating, electricity, cooling) applied to the focal points of energy efficiency and replacement of fossil energy in buildings, in trade and industry as well as mobility.
SAGE - scalable multi-agent architectures for facility management and energy efficiency
The SAGE project is developing scalable multi-agent architectures that enable buildings to recognize operational anomalies autonomously and react dynamically to environmental changes. The integration of multi-agent architectures in combination with Large Language Models (LLMs) and the development of a human-in-the-loop approach will optimize the collaboration between humans and machines. These solutions should significantly reduce the energy consumption of buildings and increase user-friendliness.
SmartControl - Standardized and smart control of municipal energy systems
The aim of the project is to develop a standardized and easy-to-implement procedure for communication, monitoring and control of decentralized technologies within municipal energy communities. Therefore, innovative interfaces and self-learning algorithms will be developed, which will ensure that the concept can be transferred to municipalities or neighborhoods without a great deal of data and measurement effort.
Tariffs4all - Participation of the citizens from Bruck in the energy transition for all
The project responds to the challenges of participation in the energy transition in the municipality of Bruck/Mur by exploring the possibilities of Power Purchase Agreements (PPAs), Peer to Peer Trading (P2P Trading) and virtual metering points for generation plants be developed and implemented as a basis for new tariff/financing models.
Twin2Share - Digital twins for energy optimization in energy communities (ECs)
Digital twins to support energy communities over their life cycle. The project focuses on optimizing energy efficiency and costs, dynamic load management and the integration of users to promote sustainable energy use and the stabilization of the electricity grid.
Urban Sky - Satellite-based planning and analysis applications for climate-neutral and resilient cities
The project investigates how satellite data can support cities and municipalities (e.g. urban development, spatial energy planning, mobility transition). Based on demand and potential analyses, service concepts will be derived that integrate existing data and tools with satellite applications. The results will be presented in a study and a Space4Cities implementation roadmap.
Vision4Voitsberg - Climate neutrality plan 2040 for the municipality of Voitsberg
Voitsberg aims to support the achievement of national climate goals by developing a tailored roadmap that builds on existing projects and targets climate neutrality by 2040. This roadmap will be created in close collaboration with the city administration, key interest groups, and decision-makers from politics and business.
scaleFLEX - Scalable method for optimizing the energy flexibility of districts
Development of a decentrally organized automation method for improving the demand-side flexibility options of buildings and districts. The utilized data-driven algorithm promise high scalability and therefore low installation and operating costs. The developed method will be validated using different building types (high-tech office buildings, low-tech office buildings, residential buildings).