Projects
There are 42 results.
"Gasthermenersatz" - Modular heat pump with environmentally friendly refrigerant to replace natural gas-based heating systems in large-scale residential buildings
The project "Gasthermenersatz" aims at developing, manufacturing, and testing a functional prototype of a decentralized, sound-optimized heat pump solution with refrigerant circuit modules connected in series or parallel. This renewable technology is well-suited to replace existing natural gas-based heating systems in large-scale residential buildings and to pave the way to carbon-neutral cities.
3D*3B - 3D-Concret Printing, Reinforcement for low carbon and bending stressed structures.
The project is about 3D printed structural elements and their integration in building structures. The focus is predominantly set on bending stresses structural elements like panels and slabs. Results will point out technical, logistic and climate relevant aspects.
AI4FM - Artificial Intelligence for Facility Management
AI-based anomaly and fault detection in buildings. Digital twins of buildings with simulation models for testing and optimizing rule-based fault detection methods. Mining of the recorded time-series data from existing Building Management Systems to train Machine Learning models for fault detection.
Abwärme_4_Kapfenberg - 100 % industrielle Abwärmeauskopplung Kapfenberg
The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Kapfenberg to foster the defossilization path.
BATTMON - Increasing the usable charging capacity, service life and safety of battery storage systems in urban areas
The aim of BATTMON is to develop an improved method of determining the condition of battery storage systems for applications in buildings and neighborhoods. To this end, area-based foil sensors are being developed for the spatially resolved measurement of temperature and pressure. This data will be used to estimate the state of charge and also the state of health more accurately and to detect cell damage at an early stage in order to reduce the risk of fire and explosion.
BIM.sustAIn - Artificial Intelligence to enhance sustainability in BIM projects
The construction sector faces growing challenges in meeting sustainability requirements, particularly during early project phases where key decisions on materials, construction methods, and energy concepts are made. This project aims to leverage AI and BIM to optimize sustainability assessments by providing precise CO₂ balance forecasts and material suggestions. The innovative approach reduces manual effort and supports the implementation of climate-neutral construction, contributing significantly to Austria’s climate goals.
BIM2BEM Flow - Continuous BIM-based energy efficient planning
Automated integration and assignment of exchange requirements between the design and simulation programs, based on the elaborated exchange information requirements, should enable continuous energy efficiency planning along the design phase.
BIM4BIPV - Future aspects of building-integrated photovoltaics (BIPV) in cross-system BIM planning
Research into an end-to-end BIM planning flow for energy-optimised, building-integrated photovoltaics (BIPV) that simultaneously generates solar energy, enables optimal use of daylight and provides shading.
BIOCOOL - Bio-inspired Surfaces for the Evaporation Cooling of Building Envelopes
The BIOCOOL project will explore the transfer of morphological principles from leaves of deciduous trees, with optimized thermal properties and efficiency of evaporation to the parametric design of form-optimized architectural ceramic surfaces for climate control of building envelopes. The study paves the way for an industrial research project.
BIPV-Booster - Game changer for façade-integrated PV systems: Development of proof-free constructions regarding fire protection
The central result of the project will be the development of a catalogue of “proof-free constructions” with regard to fire protection for façade-integrated photovoltaic systems, particularly for the more difficult case of high-rise buildings. These constructions will be defined in the project and tested in fire tests. The fire tests are to be supplemented by electrical and material-related module tests before and after the fire tests.
Beyond - Virtual Reality enabled energy services for smart energy systems
Collaborative R&D project to develop the next generation energy services with the interplay of various technologies: Virtual Reality (VR), machine learning, physical simulation and Internet of Things (IoT) platforms.
CELL4LIFE - Reversible SOCs as a link between electricity, heat and gas networks to increase the self-sufficiency and resilience of neighbourhoods
A system consisting of a solid oxide fuel cell and a Machine Learning-based control system for increasing efficiency and minimizing degradation is being developed. As a link between all energy supply networks, the system is intended to increase the self-sufficiency and resilience of plus-energy districts.
CEPA-Connect
The CEPA energy facade is an innovative building refurbishment system with an external active energy level. The aim is to revolutionize the refurbishment market. The development of the system focuses on holistic solutions for the thermal-energetic refurbishment of buildings.
Circular Bio Floor- Floor construction made from biomaterials
In this project biogenic building materials from wood industry waste and geopolymer binders are developed that can be used as tamped fill or 3D-printed dry-screed elements in timber construction. These materials offer functional benefits and an excellent eco-balance, contribute to the conservation of forests and enable the production of separable and reusable floor segment panels using digital manufacturing technologies. That significantly reduces the consumption of primary raw materials.
CoolAIR - Predictive control of natural nighttime ventilation and daylight-optimized shading for passive building cooling
Natural nighttime ventilation and daylight-optimized shadowing are high potential approaches to efficiently and economical cool buildings. Nevertheless, the full potential cannot be acquired, since, if at all, such behavior is manually initiated by users. Goal of this project is the development of an automated, self-learning system that can assess the full cooling capabilities and establish an alternative to conventional air conditioning systems.
Cooling LEC - Energy-flexible buildings by controlling cooling systems via unidirectional communication in local energy communities
As a result of climate change and the rise in temperature, especially due to the increase in active cooling systems, especially at low-voltage level, new challenges are being posed to the electricity system (in particular to the distribution network). Due to the high electrical input of active cooling units and the high density of plants, which are sometimes operated uncoordinated and at unfavorable times, leads to peak consumption in the system. The project Cooling LEC therefore has as its overall objective the development and demonstration of a central control / intelligence of decentralized active cooling systems by further developing the unidirectional communication of ripple control systems to create energy-flexible buildings in the sense of the new approach of "Local Energy Communities" by creating a "special tariff". Ripple control systems have been established for many decades and are available and proven by all energy suppliers. The upscaling potential is very big.
DigiHemp/ Digital technologies for quality assurance and performance enhancement of hemp-based building materials
Development of digital methods for describing, predicting and optimizing the thermal/mechanical properties of composite materials made from bio-based raw materials. Taking into account the complex material morphology as well as the properties of the components for the prediction of building material properties, the overall goal of increasing the use of bio-based building materials shall be achieved.
ExTra - ExergyTrafos for heating and air conditioning through district heating
As a contribution to the reduction of CO2 emissions, the project aims at upgrading existing heating networks by adding new devices, so-called exergy trafos, to the heat-exchanging transfer stations. These are driven by district heat and provide heating and cooling, as well as a reduced return temperature, as a service.
Favorite Facades Reuse
The exploratory project "Favorite Facade ReUse" has set itself the goal of renovating and thermally upgrading buildings with curtain facades with a maximum proportion of reuse and the greatest possible protection of the residents. The authenticity of the building is preserved, and CO2 emissions are minimized.
FlexHP - AI-supported control models for optimising the flexibility of heat pumps to reduce the load on the electricity grid
Development of a new type of energy management system for heat pumps that enables methods for intelligent heat pump operation and thus maximises flexibility. This requires forecast-based models for control that utilise technologies such as machine learning.